Devices and built-in models
This section gives an overview of the devices and their built-in models with their parameters. SLiCAP distinguishes two kinds of models:
Models that have an associated matrix stamp.
Models that will be expanded into models with an associated matrix stamp.
Model data will be listed in tables. The fields in these tables have the following meaning:
name
: the name of the model. This name is associated with the implementation type:type
: the implementation type of the model:a
stamp
: a matrix stamp is associated with the model bexpansion
: the model is expanded into elements with models that have associated matrix stamps
3. I
: TRUE
if a dependent variable for a branch current is added to the vector
with dependent variables else: FALSE
. This field applies only for models with type=stamp
. The name of this current is I_<refdes>
, where refdes
is the reference designator (name) of the device.
Valid model parameters and their default values are listed in the subsequent rows of the table:
param
: the name of the parameter (case sensitive)value | {expression}
: the default value or expression for the model parameterLaplace
: a booleanTRUE | FALSE
indicating if the Laplace variables
is allowed in the parameter expressiondescription
: a description of the parameter
C: Capacitor
Below the syntax and the symbol for a capacitor and the matrix stamp for model C.
Model C
Fig. 2 Figure C: Syntax, symbol and matrix stamp of a capacitor.
name |
description |
type |
I |
---|---|---|---|
C |
Linear capacitor |
stamp |
FALSE |
Parameters model C
name |
description |
default |
Laplace |
---|---|---|---|
value |
capacitance |
1 |
FALSE |
vinit |
initial voltage |
0 |
FALSE |
Examples
C1 nodeP nodeN 100n ; Capacitor of 100n between nodeP and nodeN
C1 nodeP nodeN C value = 100n ; Same as above
C1 nodeP nodeN C value = 100n vinit = 0 ; Same as above with initial condition (not yet implemented)
C1 nodeP nodeN {1/tau/R} ; Capacitance as an expression
C1 nodeP nodeN C value = {1/tau/R} ; Same as above
C1 nodeP nodeN myCap ; Same as above with a .model line
.model myCap C value={1/tau/R} vinit = 0
D: Diode
Below the syntax, the symbol and the small-signal model expansion for the a diode: model D.
Model D
Fig. 3 Figure D: Syntax, symbol and small-signal model expansion for a diode.
name |
description |
type |
---|---|---|
D |
Small-signal model diode |
expansion |
Parameters model D
name |
description |
default |
Laplace |
---|---|---|---|
gd |
conductance |
1 |
FALSE |
cd |
capacitance |
0 |
FALSE |
rs |
series resistance |
0 |
FALSE |
Examples
D1 nodeA nodeC D ; Diode anode connected to nodeA cathode to nodeC and default parameters.
D1 nodeA nodeC D1N4148
+ gd = {q_e*I_D/K_b/T_A}
+ cd = {q_e*I_D/K_b/T_A/2/PI/tau_F}
+ rs = 25
.model D1N4148 D
.param tau_F = 4n I_D = 1m
E: Voltage-controlled voltage source
SLiCAP has two models for voltage-controlled voltage sources: model E and model EZ. The later one includes a series output impedance but has a compact matrix stamp.
Models
name |
description |
type |
I |
---|---|---|---|
E |
VCVS |
stamp |
TRUE |
EZ |
VCVS with Z-series |
stamp |
TRUE |
Model E
Fig. 4 Syntax, symbol and matrix stamp of a VCVS model E
Parameters model E
name |
description |
default |
Laplace |
---|---|---|---|
value |
voltage gain |
1 |
TRUE |
Model EZ
Fig. 5 Syntax, symbol and matrix stamp of a VCVS with series impedance: model EZ
Parameters model EZ
name |
description |
default |
Laplace |
---|---|---|---|
value |
voltage gain |
1 |
TRUE |
zo |
series impedance |
1 |
TRUE |
Examples
E1 outP outN inP inN 1M
E1 outP outN inP inN {1M/(1 + s/2/PI/f_-3dB)}
E1 outP outN inP inN EZ
+ value = {A_0/(1 + s*tau)}
+ zo = {R_out*(1 + s*L_out/R_out}
E2 outP outN inP inN simpleOpamp
.model simpleOpamp EZ
+ value = {A_0/(1 + s*tau)}
+ zo = {R_out*(1 + s*L_out/R_out}
F: Current-controlled current source
Below the syntax, the symbol and the matrix stamp for a CCCS: model F.
Model F
Fig. 6 Syntax, symbol and matrix stamp of a CCCS model F
Please notice the independent variable \(I_{Fx}\) which is added to the vector of independent variables equals the product of the denominator of the current gain \(Df_s\) and the input current \(Ii_{Fx}\), rather than the input current.
name |
description |
type |
I |
---|---|---|---|
F |
VCVS |
stamp |
TRUE |
Parameters model F
name |
description |
default |
Laplace |
---|---|---|---|
value |
current gain |
1 |
TRUE |
Examples
F1 outP outN V1 20
F1 outP outN V1 {100/(1 + s/2/PI/f_-3dB)}
F1 outP outN V1 F value={A_i/(1 + s*tau)}
F2 outP outN V1 myCCCS
.model myCCCS F value = {A_i/(1 + s*tau)}
G: Voltage-controlled current source
SLiCAP has two models for voltage-controlled current sources, model ‘G’ for a complex transfer and model ‘g’ for a real transfer.
Model ‘G’ can be used for sources that need to be selected as loop gain reference variable according to the asymptotic-gain model. The transadmittance can be a function of the Laplace variable ‘s’. Model ‘g’ is intended to be used as conductance or transconductance and cannot be selected a loop gain reference variable.
Models
name |
description |
type |
I |
---|---|---|---|
G |
VCGS |
stamp |
TRUE |
g |
VCGS |
stamp |
FALSE |
Model G
Fig. 7 Syntax, symbol and matrix stamp of a VCCS: model G
Parameters model G
name |
description |
default |
Laplace |
---|---|---|---|
value |
transadmittance |
1 |
TRUE |
Model g
Fig. 8 Syntax, symbol and matrix stamp of a VCCS: model g
Parameters model g
name |
description |
default |
Laplace |
---|---|---|---|
value |
transconductance |
1 |
FALSE |
Examples
G1 outP outN inP inN 20m
G1 outP outN inP inN {1m/(1 + s/2/PI/f_-3dB)}
G1 outP outN inP inN G value = {A_y/(1 + s*tau)}
G2 outP outN inP inN myVCCS
.model myVCCS G valu e= {A_y/(1 + s*tau)}
G3 outP outN inP inN g value = 1m
G3 outP outN inP inN g value = {q*I_c/k/T}
H: Current-controlled voltage source
SLiCAP has two models for current-controlled voltage sources: model H and model HZ. The later one includes a series output impedance but has a compact matrix stamp.
Models
name |
description |
type |
I |
---|---|---|---|
H |
CCVS |
stamp |
TRUE |
HZ |
CCVS with Z-series |
stamp |
TRUE |
Model H
Fig. 9 Syntax, symbol and matrix stamp of a CCVS model H
Parameters model H
name |
description |
default |
Laplace |
---|---|---|---|
value |
transimpedance |
1 |
TRUE |
Model HZ
Fig. 10 Syntax, symbol and matrix stamp of a CCVS with series impedance: model HZ
Parameters model HZ
name |
description |
default |
Laplace |
---|---|---|---|
value |
transimpedance |
1 |
TRUE |
zo |
series impedance |
1 |
TRUE |
Examples
H1 outP outN V1 1M
H1 outP outN V1 {1M/(1 + s/2/PI/f_-3dB)}
H1 outP outN inP inN HZ
+ value = {R_T/(1 + s*tau)}
+ zo = {R_out*(1 + s*L_out/R_out}
H2 outP outN V1 simpleTransimpedanceAmp
.model simpleTransimpedanceAmp HZ
+ value = {R_T/(1 + s*tau)}
+ zo = {R_out*(1 + s*L_out/R_out}
I: Independent current source
Below the syntax, the symbol and the matrix stamp for an independent current source: model I.
Model I
Fig. 11 Syntax, symbol and matrix stamp of an independent current source: model I
name |
description |
type |
I |
---|---|---|---|
I |
Independent current source |
stamp |
FALSE |
Parameters model I
name |
description |
default |
Laplace |
---|---|---|---|
value |
Current (Laplace transform) |
0 |
TRUE |
dc |
DC value [A] |
0 |
FALSE |
dcvar |
Variance of DC value [A^2] |
0 |
FALSE |
noise |
Noise current density [A^2/Hz] |
0 |
FALSE |
Examples
* Both definitions are equivalent:
I1 n1 n2 1m
I1 n1 n2 I value = 1m
Iin 0 input I value = {I_s} noise = 1e-24 dc=10n dcvar = 4e-18
.param I_s = {1m/s}; Step of 1mA starting at t=0
J: Junction FET
Like the PN diode, the JFET model J is expanded into network elements that have a matrix stamp.
Model J
Fig. 12 Syntax, symbol and network expansion of a junction FET: model J
name |
description |
type |
---|---|---|
J |
Small-signal model JFET |
expansion |
Parameters model J
name |
description |
default |
Laplace |
---|---|---|---|
cgs |
contactance |
0 |
FALSE |
cdg |
capacitance |
0 |
FALSE |
gm |
forward transconductance |
1E-3 |
FALSE |
go |
output conductance |
0 |
FALSE |
Examples
J1 nodeD nodeG nodeS myJFET
.model myJFET J cgs=20p cdg=1p gm=15m go=500u
K: Coupling factor
Below the syntax, the symbol and the matrix stamp for a coupling between two inductors: model K.
Model K
Fig. 13 Syntax, symbol and matrix stamp of a coupling between two inductors: model K
name |
description |
type |
I |
---|---|---|---|
K |
Coupling factor |
stamp |
FALSE |
Parameters model K
name |
description |
default |
Laplace |
---|---|---|---|
value |
coupling factor |
1 |
FALSE |
Examples
L1 n1 n2 {L_a}
L2 n3 n4 {L_b}
k12 L1 L2 0.98
L: Inductor
Below the syntax, the symbol and the matrix stamp for an inductor: model L.
Model L:
Fig. 14 Syntax, symbol and matrix stamp of an inductor: model L
name |
description |
type |
I |
---|---|---|---|
L |
Linear inductor |
stamp |
TRUE |
Parameters model L
name |
description |
default |
Laplace |
---|---|---|---|
value |
inductance |
1 |
FALSE |
iinit |
initial condition |
0 |
FALSE |
Examples
L1 n1 n2 {L_a}
L1 n1 n2 L value = {L_a}
L1 n1 n2 L myL
.model myL L value = {L_a}
L1 n1 n2 L myL
.model myL L value = {L_a} iinit = 0
M: 4-terminal MOS
SLiCAP has two models for 4-terminal MOS transistors. Model M for a single MOS transistor and model MD for a differential-pair MOS. The latter one facilitates the design and analysis of negative-feedback amplifiers in which one controlled source that models the gain of the differential-pair MOS can be selected as loop gain reference variable.
Models
name |
description |
type |
---|---|---|
M |
Four-terminal MOS |
expansion |
MD |
Four-terminal diff. pair MOS |
expansion |
Model M
Fig. 15 Syntax, symbol and network expansion of a 4-terminal MOS: model M
Parameters model M
name |
description |
default |
Laplace |
---|---|---|---|
cgs |
gate-source capacitance |
0 |
FALSE |
cgb |
gate-bulk capacitance |
0 |
FALSE |
cdg |
drain-gate capacitance |
0 |
FALSE |
cdb |
drain-bulk capacitance |
0 |
FALSE |
csb |
source-bulk capacitance |
0 |
FALSE |
gm |
forward transconductance |
1E-3 |
FALSE |
gb |
bulk transconductance |
0 |
FALSE |
go |
output conductance |
0 |
FALSE |
Model MD
Fig. 16 Syntax, symbol and network expansion of a 4-terminal MOS: model MD
Parameters model MD
name |
description |
default |
Laplace |
---|---|---|---|
cgg |
gate-gate capacitance |
0 |
FALSE |
cdg |
drain-gate capacitance |
0 |
FALSE |
cdd |
drain-drain capacitance |
0 |
FALSE |
gm |
forward transconductance |
1E-3 |
FALSE |
go |
output conductance |
0 |
FALSE |
Examples
Below three ways of defining a MOS in a circuit. The first example calls the mos model M with its default parameters and then overrides these parameters by local definitions in the call. The model parameter gm
is passed as global parameter gm
.
M1 D G S B M gm={g_m} gb = 150u go = 100u cgs = 0.2p cdg = 10f
The second example calls the model from a library file and redefines g_m
as a global parameter.
M1 D G S B myMOS gm = {g_m}
.include myMOS.lib
The third example calls a model and its parameters. For a given process, geometry and device operating point, these small-signal parameters can be obtained from a SPICE simulation.
M1 D G S B M1
.model M1 M gm = 2m gb = 150u go = 100u cgs = 0.2p cdg = 10f
The next example shows the application of a differential-pair MOS.
M1 D1 D2 G1 G2 myDiffPairMOS
*parameters of the single MOS
.param g_m = 1m g_o = 100u c_gs = 0.2p c_dg = 10f c_db = 5f
*parameters of the diff. pair MOS
.model myDiffPairMOS MD
+ gm = {g_m/2}
+ go = {g_o/2}
+ cgg = {c_gs/2}
+ cdg = {c_dg}
+ cdd = {c_db/2}
N: Nullor
Model N
Fig. 17 Syntax, symbol and matrix stamp of a nullor: model N
name |
description |
type |
I |
---|---|---|---|
N |
Nullor |
stamp |
TRUE |
Examples
N_amp out 0 in+ in-
O: Operational amplifier
SLiCAP has two built-in models for operational amplifiers:
A small-signal model for a voltage-feedbackoperational amplifier: model OV
A small-signal model for a current-feedback operational amplifier: model OC
Models
name |
description |
type |
---|---|---|
OV |
Voltage-feedback OpAmp |
expansion |
OC |
Current-feedback OpAmp |
expansion |
Model OV
Fig. 18 Syntax, symbol and network expansion of a voltage-feedback operational amplifier: model OV
Parameters model OV
name | description |
default |
Laplace |
|
---|---|---|---|
cd |
differential-mode input capacitance |
0 |
FALSE |
cc |
common-mode input capacitance |
0 |
FALSE |
gd |
differential-mode input conductance |
0 |
FALSE |
gc |
common-mode input conductance |
0 |
FALSE |
av |
voltage gain |
1E6 |
TRUE |
zo |
output impedance |
0 |
TRUE |
Model OC
Fig. 19 Syntax, symbol and network expansion of a current-feedback operational amplifier: model OC
Parameters model OC
name |
description |
default |
Laplace |
---|---|---|---|
cp |
input capacitance non-inverting input |
0 |
FALSE |
gp |
input conductance non-inverting input |
0 |
FALSE |
cpn |
input capacitance |
0 |
FALSE |
gpn |
input conductance |
0 |
FALSE |
gm |
input stage transconductance |
20E-3 |
FALSE |
zt |
output stage transimpedance |
1E6 |
TRUE |
zo |
output impedance |
0 |
TRUE |
Examples
O1 inP inN out 0 AD8610
.model AD8610 OV
+ cd = 15p
+ cc = 8p
+ av = {300k*(1-s*1.3n)/(1+s*2.4m)/(1+s*1.3n)}
+ zo = 20
O1 inP inN out 0 LT1223
.model LT1223 OC
+ cp = 1.5p
+ gp = 100n
+ gm = 65m
+ zt = {5M/(1+s*680u)/(1+s*1.6n)}
+ zo = 30
Q: 4-terminal BJT
SLiCAP incorporates three models for 4-terminal Bipolar Junction Transistors (BJTs):
Model QV for a single vertical BJT
Model QL for a single lateral BJT
Model QD for a differential pair.
The latter one facilitates the design and analysis of negative-feedback amplifiers in which one controlled source that models the gain of the differential-pair BJT can be selected as loop gain reference variable.
Models
name |
description |
type |
---|---|---|
QV |
Four-terminal vertical BJT |
expansion |
QL |
Four-terminal lateral BJT |
expansion |
QD |
Four-terminal diff. pair BJT |
expansion |
Model QV
Fig. 20 SLiCAP built-in model for a 4-terminal vertical BJT: model QV
Parameters model QV
name |
description |
default |
Laplace |
---|---|---|---|
cpi |
internal base-emitter capacitance |
0 |
FALSE |
cbc |
internal base-collector capacitance |
0 |
FALSE |
cbx |
external base-collector capacitance |
0 |
FALSE |
cs |
collector-substrate capacitance |
0 |
FALSE |
gpi |
internal base-emitter conductance |
1E-3 |
FALSE |
gm |
transconductance |
0 |
FALSE |
go |
output conductance |
0 |
FALSE |
gbc |
internal base-collector conductance |
0 |
FALSE |
rb |
base resistance |
0 |
FALSE |
Model QL
Fig. 21 SLiCAP built-in model for a 4-terminal lateral BJT: model QL
Parameters model QL
name |
description |
default |
Laplace |
---|---|---|---|
cpi |
internal base-emitter capacitance |
0 |
FALSE |
cbc |
internal base-collector capacitance |
0 |
FALSE |
cbx |
external base-collector capacitance |
0 |
FALSE |
cs |
base-substrate capacitance |
0 |
FALSE |
gpi |
internal base-emitter conductance |
1E-3 |
FALSE |
gm |
transconductance |
0 |
FALSE |
go |
output conductance |
0 |
FALSE |
gbc |
internal base-collector conductance |
0 |
FALSE |
rb |
base resistance |
0 |
FALSE |
Model QD
Fig. 22 SLiCAP built-in model for a differential-pair BJT: model QD
Parameters model QD
name |
description |
default |
Laplace |
---|---|---|---|
cbb |
internal base-base capacitance |
0 |
FALSE |
cbc |
internal base-collector capacitance |
0 |
FALSE |
cbx |
external base-collector capacitance |
0 |
FALSE |
gbb |
internal base-base conductance |
0 |
FALSE |
gm |
forward transconductance |
1E-3 |
FALSE |
gcc |
colector-collector conductance |
0 |
FALSE |
gbc |
internal base-colector conductance |
0 |
FALSE |
rb |
base resistance |
0 |
FALSE |
Examples
Below a specification of a BJT of which the model parameters are expressed in SPICE model parameters, the operating point current I_C
and the operating voltage V_CE
. The expressions are simplifications of the nonlinear device equations for a bipolar transistor.
Q1 C B E S QV
+ gm = {g_m}
+ gpi = {g_m/beta_F}
+ go = {(I_c+V_ce)/VAF}
+ cbc = {c_bc}
+ cbx = {c_bx}
+ cpi = {(CJE + TAUF*g_m)}
+ rb = {r_b}
+ gbc = {g_bc}
.param gm = I_c/U_T
Below a specification of a BJT that uses small-signal parameters in an operating point as they can be determined with the aid of a SPICE operating point simulation.
Q1 C B E S Q1
.model Q1 QV
+ gm = 20m
+ rb = 50
+ go = 10u
+ gbc = 0
+ cpi = 2p
+ cbc = 0.05p
+ cbx = 0.05p
+ cs = 0.2p
Below a specification of a lateral BJT that uses small-signal parameters in an operating point as they can be determined with the aid of a SPICE operating point simulation.
Q1 C B E S Q1
.model Q1 QL
+ gm=20m
+ rb=50
+ go=10u
+ gbc=0
+ cpi=2p
+ cbc=0.05p
+ cbx=0.05p
+ cs=0.2p
Below an example of a differential pair BJT of which the parameters are related to those of the single transistor stage, biased in the same operating point as the transistors of the differential pair.
Q1 C1 C2 B1 B2 myDiffPairBJT
.model myDiffPairBJT QD
+ gm = {I_c/2/U_T}
+ gpi = {I_c/2/U_T/beta_AC}
+ go = {2*(I_c+V_ce)/V_AF}
+ cbc = {c_bc}
+ cbx = {c_bx}
+ cpi = {(CJE + TAUF*I_c/U_T)/2}
+ rb = {r_b}
* below the device parameters of the single transistor
.param r_b = 50 V_AF=50 g_bc = 0 CJE = 2p c_bc = 0.05p c_bx = 0.05p beta_AC=100
* below the operating point the single transistor
.param I_c = 1m V_ce=5
R: Resistor
The default model type for a resistor is R
. Zero value for its resistance causes a divide by zero error while building the matrix. If zero value is required, e.g. because of parameter stepping, model r
should be used.
Models
name |
description |
type |
I |
---|---|---|---|
R |
Resistor resistance > 0 |
stamp |
FALSE |
r |
Resistor resistance >= 0 |
stamp |
TRUE |
Model R
Fig. 23 Syntax, symbol and matrix stamp of a resistor: model R
Parameters model R
name |
description |
default |
Laplace |
---|---|---|---|
value |
resistance |
1 |
FALSE |
dcvar |
variance |
0 |
FALSE |
dcvarlot |
variance of lot |
0 |
FALSE |
noisetemp |
noise temperature |
0 |
FALSE |
noiseflow |
corner frequency 1/f noise |
0 |
FALSE |
dcvar |
variance |
0 |
FALSE |
Model r
Fig. 24 Syntax, symbol and matrix stamp of a resistor: model r
Parameters model r
name |
description |
default |
Laplace |
---|---|---|---|
value |
resistance |
1 |
FALSE |
dcvar |
variance |
0 |
FALSE |
dcvarlot |
variance of lot |
0 |
FALSE |
noisetemp |
noise temperature |
0 |
FALSE |
noiseflow |
corner frequency 1/f noise |
0 |
FALSE |
dcvar |
variance |
0 |
FALSE |
Examples
The examples below illustrates four different ways for specifying a resistor that is connected between the nodes nP and nN and has a numerical value of 10kOhm.
R1 nP nN R value = {R} noiseTemp = {T} noiseflow ={f_ell} dcvar = {sigma_R^2}
R1 nP nN {20 * alpha}
R1 nP nN r value = {R_a} dcvar = {sigma^2}
R1 nP nN myR
.model myR R value = {20 * alpha}
.param alpha = 500
T: Ideal transformer
SLiCAP has a built-in model for an ideal transformer.
Model T
Fig. 25 Syntax, symbol and matrix stamp of an ideal transformer: model T
name |
description |
type |
I |
---|---|---|---|
T |
Ideal transformer |
stamp |
TRUE |
Parameters model T
name |
description |
default |
Laplace |
---|---|---|---|
value |
turns ratio |
1 |
FALSE |
Examples
T1 secP secN priP priN {Vpri/Vsec}
T1 secP secN priP priN T value={Vpri/Vsec}
T1 secP secN priP priN myTrafo
.model myTrafo T value={Vpri/Vsec}
V: Independent voltage source
Model V
Fig. 26 Symbol, syntax and matrix stamp of an ideal independent voltage source: model V
name |
description |
type |
I |
---|---|---|---|
V |
Independent voltage source |
stamp |
TRUE |
Parameters model V
name |
description |
default |
Laplace |
---|---|---|---|
value |
Voltage (Laplace transform) |
0 |
TRUE |
dc |
DC value |
0 |
FALSE |
dcvar |
Variance of DC value [V^2] |
0 |
FALSE |
noise |
Noise voltage density [V^2/Hz] |
0 |
FALSE |
Examples
* Both definitions are equivalent:
V1 n1 n2 20m
V1 n1 n2 V value = 20m
Vin 0 input V value = {V_s} noise = 1e-16 dc = 0 dcvar = 1e-4
.param V_s = {1/s}; Step of 1V starting at t = 0
W: Gyrator
SLiCAP is often used for conceptual design. For this reason the gyrator has been included.
Model W
name |
description |
type |
I |
---|---|---|---|
W |
Gyrator |
stamp |
FALSE |
Parameters model W
name |
description |
default |
Laplace |
---|---|---|---|
value |
transconductance |
1 |
FALSE |
Examples
Below two definitions of a gyrator with a conversion gain of 10mA/V.
W1 outP outN inP inN 10m
W1 outP outN inP inN W value = 10m
X: Sub circuit call
See examples in section: .subckt … .ends lines.