Devices and built-in models

../_images/colorCode.svg

This section gives an overview of the devices and their built-in models with their parameters. SLiCAP distinguishes two kinds of models:

  1. Models that have an associated matrix stamp.

  2. Models that will be expanded into models with an associated matrix stamp.

Model data will be listed in tables. The fields in these tables have the following meaning:

  1. name: the name of the model. This name is associated with the implementation type:

  2. type: the implementation type of the model:

    a stamp: a matrix stamp is associated with the model b expansion: the model is expanded into elements with models that have associated matrix stamps

3. I: TRUE if a dependent variable for a branch current is added to the vector with dependent variables else: FALSE. This field applies only for models with type=stamp. The name of this current is I_<refdes>, where refdes is the reference designator (name) of the device.

Valid model parameters and their default values are listed in the subsequent rows of the table:

  1. param: the name of the parameter (case sensitive)

  2. value | {expression}: the default value or expression for the model parameter

  3. Laplace: a boolean TRUE | FALSE indicating if the Laplace variable s is allowed in the parameter expression

  4. description: a description of the parameter

C: Capacitor

Below the syntax and the symbol for a capacitor and the matrix stamp for model C.

Model C

Syntax, symbol and matrix stamp of a capacitor

Fig. 2 Figure C: Syntax, symbol and matrix stamp of a capacitor.

name

description

type

I

C

Linear capacitor

stamp

FALSE

Parameters model C

name

description

default

Laplace

value

capacitance

1

FALSE

vinit

initial voltage

0

FALSE

Examples

C1 nodeP nodeN 100n                      ; Capacitor of 100n between nodeP and nodeN
C1 nodeP nodeN C value = 100n            ; Same as above
C1 nodeP nodeN C value = 100n vinit = 0  ; Same as above with initial condition (not yet implemented)
C1 nodeP nodeN {1/tau/R}                 ; Capacitance as an expression
C1 nodeP nodeN C value = {1/tau/R}       ; Same as above
C1 nodeP nodeN myCap                     ; Same as above with a .model line
.model myCap C value={1/tau/R} vinit = 0

D: Diode

Below the syntax, the symbol and the small-signal model expansion for the a diode: model D.

Model D

Syntax, symbol and small-signal model expansion for a diode

Fig. 3 Figure D: Syntax, symbol and small-signal model expansion for a diode.

name

description

type

D

Small-signal model diode

expansion

Parameters model D

name

description

default

Laplace

gd

conductance

1

FALSE

cd

capacitance

0

FALSE

rs

series resistance

0

FALSE

Examples

D1 nodeA nodeC D ; Diode anode connected to nodeA cathode to nodeC and default parameters.
D1 nodeA nodeC D1N4148
+ gd = {q_e*I_D/K_b/T_A}
+ cd = {q_e*I_D/K_b/T_A/2/PI/tau_F}
+ rs = 25
.model D1N4148 D
.param tau_F = 4n I_D = 1m

E: Voltage-controlled voltage source

SLiCAP has two models for voltage-controlled voltage sources: model E and model EZ. The later one includes a series output impedance but has a compact matrix stamp.

Models

name

description

type

I

E

VCVS

stamp

TRUE

EZ

VCVS with Z-series

stamp

TRUE

Model E

Syntax, symbol and matrix stamp of a VCVS: model E

Fig. 4 Syntax, symbol and matrix stamp of a VCVS model E

Parameters model E

name

description

default

Laplace

value

voltage gain

1

TRUE

Model EZ

Syntax, symbol and matrix stamp of a VCVS with series impedance: model EZ

Fig. 5 Syntax, symbol and matrix stamp of a VCVS with series impedance: model EZ

Parameters model EZ

name

description

default

Laplace

value

voltage gain

1

TRUE

zo

series impedance

1

TRUE

Examples

E1 outP outN inP inN 1M
E1 outP outN inP inN {1M/(1 + s/2/PI/f_-3dB)}
E1 outP outN inP inN EZ
+ value = {A_0/(1 + s*tau)}
+ zo = {R_out*(1 + s*L_out/R_out}
E2 outP outN inP inN simpleOpamp
.model simpleOpamp EZ
+ value = {A_0/(1 + s*tau)}
+ zo = {R_out*(1 + s*L_out/R_out}

F: Current-controlled current source

Below the syntax, the symbol and the matrix stamp for a CCCS: model F.

Model F

Syntax, symbol and matrix stamp of a CCCS: model F

Fig. 6 Syntax, symbol and matrix stamp of a CCCS model F

Please notice the independent variable \(I_{Fx}\) which is added to the vector of independent variables equals the product of the denominator of the current gain \(Df_s\) and the input current \(Ii_{Fx}\), rather than the input current.

name

description

type

I

F

VCVS

stamp

TRUE

Parameters model F

name

description

default

Laplace

value

current gain

1

TRUE

Examples

F1 outP outN V1 20
F1 outP outN V1 {100/(1 + s/2/PI/f_-3dB)}
F1 outP outN V1 F value={A_i/(1 + s*tau)}
F2 outP outN V1 myCCCS
.model myCCCS F value = {A_i/(1 + s*tau)}

G: Voltage-controlled current source

SLiCAP has two models for voltage-controlled current sources, model ‘G’ for a complex transfer and model ‘g’ for a real transfer.

Model ‘G’ can be used for sources that need to be selected as loop gain reference variable according to the asymptotic-gain model. The transadmittance can be a function of the Laplace variable ‘s’. Model ‘g’ is intended to be used as conductance or transconductance and cannot be selected a loop gain reference variable.

Models

name

description

type

I

G

VCGS

stamp

TRUE

g

VCGS

stamp

FALSE

Model G

Syntax, symbol and matrix stamp of a VCCS: model G

Fig. 7 Syntax, symbol and matrix stamp of a VCCS: model G

Parameters model G

name

description

default

Laplace

value

transadmittance

1

TRUE

Model g

Syntax, symbol and matrix stamp of a VCCS: model g

Fig. 8 Syntax, symbol and matrix stamp of a VCCS: model g

Parameters model g

name

description

default

Laplace

value

transconductance

1

FALSE

Examples

G1 outP outN inP inN 20m
G1 outP outN inP inN {1m/(1 + s/2/PI/f_-3dB)}
G1 outP outN inP inN G value = {A_y/(1 + s*tau)}
G2 outP outN inP inN myVCCS
.model myVCCS G valu e= {A_y/(1 + s*tau)}
G3 outP outN inP inN g value = 1m
G3 outP outN inP inN g value = {q*I_c/k/T}

H: Current-controlled voltage source

SLiCAP has two models for current-controlled voltage sources: model H and model HZ. The later one includes a series output impedance but has a compact matrix stamp.

Models

name

description

type

I

H

CCVS

stamp

TRUE

HZ

CCVS with Z-series

stamp

TRUE

Model H

Syntax, symbol and matrix stamp of a CCVS: model H

Fig. 9 Syntax, symbol and matrix stamp of a CCVS model H

Parameters model H

name

description

default

Laplace

value

transimpedance

1

TRUE

Model HZ

Syntax, symbol and matrix stamp of a CCVS with series impedance: model HZ

Fig. 10 Syntax, symbol and matrix stamp of a CCVS with series impedance: model HZ

Parameters model HZ

name

description

default

Laplace

value

transimpedance

1

TRUE

zo

series impedance

1

TRUE

Examples

H1 outP outN V1 1M
H1 outP outN V1 {1M/(1 + s/2/PI/f_-3dB)}
H1 outP outN inP inN HZ
+ value = {R_T/(1 + s*tau)}
+ zo = {R_out*(1 + s*L_out/R_out}
H2 outP outN V1 simpleTransimpedanceAmp
.model simpleTransimpedanceAmp HZ
+ value = {R_T/(1 + s*tau)}
+ zo = {R_out*(1 + s*L_out/R_out}

I: Independent current source

Below the syntax, the symbol and the matrix stamp for an independent current source: model I.

Model I

Syntax, symbol and matrix stamp of an independent current source: model I

Fig. 11 Syntax, symbol and matrix stamp of an independent current source: model I

name

description

type

I

I

Independent current source

stamp

FALSE

Parameters model I

name

description

default

Laplace

value

Current (Laplace transform)

0

TRUE

dc

DC value [A]

0

FALSE

dcvar

Variance of DC value [A^2]

0

FALSE

noise

Noise current density [A^2/Hz]

0

FALSE

Examples

* Both definitions are equivalent:
I1 n1 n2 1m
I1 n1 n2 I value = 1m
Iin 0 input I value = {I_s} noise = 1e-24 dc=10n dcvar = 4e-18
.param I_s = {1m/s}; Step of 1mA starting at t=0

J: Junction FET

Like the PN diode, the JFET model J is expanded into network elements that have a matrix stamp.

Model J

Syntax, symbol and network expansion of a junction FET: model J

Fig. 12 Syntax, symbol and network expansion of a junction FET: model J

name

description

type

J

Small-signal model JFET

expansion

Parameters model J

name

description

default

Laplace

cgs

contactance

0

FALSE

cdg

capacitance

0

FALSE

gm

forward transconductance

1E-3

FALSE

go

output conductance

0

FALSE

Examples

J1 nodeD nodeG nodeS myJFET
.model myJFET J cgs=20p cdg=1p gm=15m go=500u

K: Coupling factor

Below the syntax, the symbol and the matrix stamp for a coupling between two inductors: model K.

Model K

Syntax, symbol and matrix stamp of a coupling between two inductors: model K

Fig. 13 Syntax, symbol and matrix stamp of a coupling between two inductors: model K

name

description

type

I

K

Coupling factor

stamp

FALSE

Parameters model K

name

description

default

Laplace

value

coupling factor

1

FALSE

Examples

L1 n1 n2 {L_a}
L2 n3 n4 {L_b}
k12 L1 L2 0.98

L: Inductor

Below the syntax, the symbol and the matrix stamp for an inductor: model L.

Model L:

Syntax, symbol and matrix stamp of an inductor: model L

Fig. 14 Syntax, symbol and matrix stamp of an inductor: model L

name

description

type

I

L

Linear inductor

stamp

TRUE

Parameters model L

name

description

default

Laplace

value

inductance

1

FALSE

iinit

initial condition

0

FALSE

Examples

L1 n1 n2 {L_a}
L1 n1 n2 L value = {L_a}
L1 n1 n2 L myL
.model myL L value = {L_a}
L1 n1 n2 L myL
.model myL L value = {L_a} iinit = 0

M: 4-terminal MOS

SLiCAP has two models for 4-terminal MOS transistors. Model M for a single MOS transistor and model MD for a differential-pair MOS. The latter one facilitates the design and analysis of negative-feedback amplifiers in which one controlled source that models the gain of the differential-pair MOS can be selected as loop gain reference variable.

Models

name

description

type

M

Four-terminal MOS

expansion

MD

Four-terminal diff. pair MOS

expansion

Model M

Syntax, symbol and network expansion of a 4-terminal MOS: model M

Fig. 15 Syntax, symbol and network expansion of a 4-terminal MOS: model M

Parameters model M

name

description

default

Laplace

cgs

gate-source capacitance

0

FALSE

cgb

gate-bulk capacitance

0

FALSE

cdg

drain-gate capacitance

0

FALSE

cdb

drain-bulk capacitance

0

FALSE

csb

source-bulk capacitance

0

FALSE

gm

forward transconductance

1E-3

FALSE

gb

bulk transconductance

0

FALSE

go

output conductance

0

FALSE

Model MD

Syntax, symbol and network expansion of a 4-terminal MOS: model MD

Fig. 16 Syntax, symbol and network expansion of a 4-terminal MOS: model MD

Parameters model MD

name

description

default

Laplace

cgg

gate-gate capacitance

0

FALSE

cdg

drain-gate capacitance

0

FALSE

cdd

drain-drain capacitance

0

FALSE

gm

forward transconductance

1E-3

FALSE

go

output conductance

0

FALSE

Examples

Below three ways of defining a MOS in a circuit. The first example calls the mos model M with its default parameters and then overrides these parameters by local definitions in the call. The model parameter gm is passed as global parameter gm.

M1 D G S B M gm={g_m} gb = 150u go = 100u cgs = 0.2p cdg = 10f

The second example calls the model from a library file and redefines g_m as a global parameter.

M1 D G S B myMOS gm = {g_m}
.include myMOS.lib

The third example calls a model and its parameters. For a given process, geometry and device operating point, these small-signal parameters can be obtained from a SPICE simulation.

M1 D G S B M1
.model M1 M gm = 2m gb = 150u go = 100u cgs = 0.2p cdg = 10f

The next example shows the application of a differential-pair MOS.

M1 D1 D2 G1 G2 myDiffPairMOS
*parameters of the single MOS
.param g_m = 1m g_o = 100u c_gs = 0.2p c_dg = 10f c_db = 5f
*parameters of the diff. pair MOS
.model myDiffPairMOS MD
+ gm  = {g_m/2}
+ go  = {g_o/2}
+ cgg = {c_gs/2}
+ cdg = {c_dg}
+ cdd = {c_db/2}

N: Nullor

Model N

Syntax, symbol and matrix stamp of a nullor: model N

Fig. 17 Syntax, symbol and matrix stamp of a nullor: model N

name

description

type

I

N

Nullor

stamp

TRUE

Examples

N_amp out 0 in+ in-

O: Operational amplifier

SLiCAP has two built-in models for operational amplifiers:

  1. A small-signal model for a voltage-feedbackoperational amplifier: model OV

  2. A small-signal model for a current-feedback operational amplifier: model OC

Models

name

description

type

OV

Voltage-feedback OpAmp

expansion

OC

Current-feedback OpAmp

expansion

Model OV

Syntax, symbol and network expansion of a voltage-feedback operational amplifier: model OV

Fig. 18 Syntax, symbol and network expansion of a voltage-feedback operational amplifier: model OV

Parameters model OV

name | description

default

Laplace

cd

differential-mode input capacitance

0

FALSE

cc

common-mode input capacitance

0

FALSE

gd

differential-mode input conductance

0

FALSE

gc

common-mode input conductance

0

FALSE

av

voltage gain

1E6

TRUE

zo

output impedance

0

TRUE

Model OC

Syntax, symbol and network expansion of a current-feedback operational amplifier: model OC

Fig. 19 Syntax, symbol and network expansion of a current-feedback operational amplifier: model OC

Parameters model OC

name

description

default

Laplace

cp

input capacitance non-inverting input

0

FALSE

gp

input conductance non-inverting input

0

FALSE

cpn

input capacitance

0

FALSE

gpn

input conductance

0

FALSE

gm

input stage transconductance

20E-3

FALSE

zt

output stage transimpedance

1E6

TRUE

zo

output impedance

0

TRUE

Examples

O1 inP inN out 0 AD8610
.model AD8610 OV
+ cd = 15p
+ cc = 8p
+ av = {300k*(1-s*1.3n)/(1+s*2.4m)/(1+s*1.3n)}
+ zo = 20
O1 inP inN out 0 LT1223
.model LT1223 OC
+ cp = 1.5p
+ gp = 100n
+ gm = 65m
+ zt = {5M/(1+s*680u)/(1+s*1.6n)}
+ zo = 30

Q: 4-terminal BJT

SLiCAP incorporates three models for 4-terminal Bipolar Junction Transistors (BJTs):

  1. Model QV for a single vertical BJT

  2. Model QL for a single lateral BJT

  3. Model QD for a differential pair.

    The latter one facilitates the design and analysis of negative-feedback amplifiers in which one controlled source that models the gain of the differential-pair BJT can be selected as loop gain reference variable.

Models

name

description

type

QV

Four-terminal vertical BJT

expansion

QL

Four-terminal lateral BJT

expansion

QD

Four-terminal diff. pair BJT

expansion

Model QV

SLiCAP built-in model for a 4-terminal vertical BJT: model QV

Fig. 20 SLiCAP built-in model for a 4-terminal vertical BJT: model QV

Parameters model QV

name

description

default

Laplace

cpi

internal base-emitter capacitance

0

FALSE

cbc

internal base-collector capacitance

0

FALSE

cbx

external base-collector capacitance

0

FALSE

cs

collector-substrate capacitance

0

FALSE

gpi

internal base-emitter conductance

1E-3

FALSE

gm

transconductance

0

FALSE

go

output conductance

0

FALSE

gbc

internal base-collector conductance

0

FALSE

rb

base resistance

0

FALSE

Model QL

SLiCAP built-in model for a 4-terminal lateral BJT: model QL

Fig. 21 SLiCAP built-in model for a 4-terminal lateral BJT: model QL

Parameters model QL

name

description

default

Laplace

cpi

internal base-emitter capacitance

0

FALSE

cbc

internal base-collector capacitance

0

FALSE

cbx

external base-collector capacitance

0

FALSE

cs

base-substrate capacitance

0

FALSE

gpi

internal base-emitter conductance

1E-3

FALSE

gm

transconductance

0

FALSE

go

output conductance

0

FALSE

gbc

internal base-collector conductance

0

FALSE

rb

base resistance

0

FALSE

Model QD

SLiCAP built-in model for a differential-pair BJT: model QD

Fig. 22 SLiCAP built-in model for a differential-pair BJT: model QD

Parameters model QD

name

description

default

Laplace

cbb

internal base-base capacitance

0

FALSE

cbc

internal base-collector capacitance

0

FALSE

cbx

external base-collector capacitance

0

FALSE

gbb

internal base-base conductance

0

FALSE

gm

forward transconductance

1E-3

FALSE

gcc

colector-collector conductance

0

FALSE

gbc

internal base-colector conductance

0

FALSE

rb

base resistance

0

FALSE

Examples

Below a specification of a BJT of which the model parameters are expressed in SPICE model parameters, the operating point current I_C and the operating voltage V_CE. The expressions are simplifications of the nonlinear device equations for a bipolar transistor.

Q1 C B E S QV
+ gm  = {g_m}
+ gpi = {g_m/beta_F}
+ go  = {(I_c+V_ce)/VAF}
+ cbc = {c_bc}
+ cbx = {c_bx}
+ cpi = {(CJE + TAUF*g_m)}
+ rb  = {r_b}
+ gbc = {g_bc}
.param gm = I_c/U_T

Below a specification of a BJT that uses small-signal parameters in an operating point as they can be determined with the aid of a SPICE operating point simulation.

Q1 C B E S Q1
.model Q1 QV
+ gm  = 20m
+ rb  = 50
+ go  = 10u
+ gbc = 0
+ cpi = 2p
+ cbc = 0.05p
+ cbx = 0.05p
+ cs  = 0.2p

Below a specification of a lateral BJT that uses small-signal parameters in an operating point as they can be determined with the aid of a SPICE operating point simulation.

Q1 C B E S Q1
.model Q1 QL
+ gm=20m
+ rb=50
+ go=10u
+ gbc=0
+ cpi=2p
+ cbc=0.05p
+ cbx=0.05p
+ cs=0.2p

Below an example of a differential pair BJT of which the parameters are related to those of the single transistor stage, biased in the same operating point as the transistors of the differential pair.

Q1 C1 C2 B1 B2 myDiffPairBJT
.model myDiffPairBJT QD
+ gm  = {I_c/2/U_T}
+ gpi = {I_c/2/U_T/beta_AC}
+ go  = {2*(I_c+V_ce)/V_AF}
+ cbc = {c_bc}
+ cbx = {c_bx}
+ cpi = {(CJE + TAUF*I_c/U_T)/2}
+ rb  = {r_b}
* below the device parameters of the single transistor
.param r_b = 50 V_AF=50 g_bc = 0 CJE = 2p c_bc = 0.05p c_bx = 0.05p beta_AC=100
* below the operating point the single transistor
.param I_c = 1m V_ce=5

R: Resistor

The default model type for a resistor is R. Zero value for its resistance causes a divide by zero error while building the matrix. If zero value is required, e.g. because of parameter stepping, model r should be used.

Models

name

description

type

I

R

Resistor resistance > 0

stamp

FALSE

r

Resistor resistance >= 0

stamp

TRUE

Model R

Syntax, symbol and matrix stamp of a resistor: model R

Fig. 23 Syntax, symbol and matrix stamp of a resistor: model R

Parameters model R

name

description

default

Laplace

value

resistance

1

FALSE

dcvar

variance

0

FALSE

dcvarlot

variance of lot

0

FALSE

noisetemp

noise temperature

0

FALSE

noiseflow

corner frequency 1/f noise

0

FALSE

dcvar

variance

0

FALSE

Model r

Syntax, symbol and matrix stamp of a resistor: model r

Fig. 24 Syntax, symbol and matrix stamp of a resistor: model r

Parameters model r

name

description

default

Laplace

value

resistance

1

FALSE

dcvar

variance

0

FALSE

dcvarlot

variance of lot

0

FALSE

noisetemp

noise temperature

0

FALSE

noiseflow

corner frequency 1/f noise

0

FALSE

dcvar

variance

0

FALSE

Examples

The examples below illustrates four different ways for specifying a resistor that is connected between the nodes nP and nN and has a numerical value of 10kOhm.

R1 nP nN R value = {R} noiseTemp = {T} noiseflow ={f_ell} dcvar = {sigma_R^2}
R1 nP nN {20 * alpha}
R1 nP nN r value = {R_a} dcvar = {sigma^2}
R1 nP nN myR
.model myR R value = {20 * alpha}
.param alpha = 500

T: Ideal transformer

SLiCAP has a built-in model for an ideal transformer.

Model T

Syntax, symbol and matrix stamp of an ideal transformer: model T

Fig. 25 Syntax, symbol and matrix stamp of an ideal transformer: model T

name

description

type

I

T

Ideal transformer

stamp

TRUE

Parameters model T

name

description

default

Laplace

value

turns ratio

1

FALSE

Examples

T1 secP secN priP priN {Vpri/Vsec}
T1 secP secN priP priN T value={Vpri/Vsec}
T1 secP secN priP priN myTrafo
.model myTrafo T value={Vpri/Vsec}

V: Independent voltage source

Model V

Symbol, syntax and matrix stamp of an ideal independent voltage source: model V

Fig. 26 Symbol, syntax and matrix stamp of an ideal independent voltage source: model V

name

description

type

I

V

Independent voltage source

stamp

TRUE

Parameters model V

name

description

default

Laplace

value

Voltage (Laplace transform)

0

TRUE

dc

DC value

0

FALSE

dcvar

Variance of DC value [V^2]

0

FALSE

noise

Noise voltage density [V^2/Hz]

0

FALSE

Examples

* Both definitions are equivalent:
V1 n1 n2 20m
V1 n1 n2 V value = 20m
Vin 0 input V value = {V_s} noise = 1e-16 dc = 0 dcvar = 1e-4
.param V_s = {1/s}; Step of 1V starting at t = 0

W: Gyrator

SLiCAP is often used for conceptual design. For this reason the gyrator has been included.

Model W

Syntax, symbol and matrix stamp of a gyrator: model W

name

description

type

I

W

Gyrator

stamp

FALSE

Parameters model W

name

description

default

Laplace

value

transconductance

1

FALSE

Examples

Below two definitions of a gyrator with a conversion gain of 10mA/V.

W1 outP outN inP inN 10m
W1 outP outN inP inN W value = 10m

X: Sub circuit call

See examples in section: .subckt … .ends lines.